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Abstract — Unlike the regular guitar pedals in the
market, the ADEPT system aims to bring an affordable
solution to develop and test out a multitude of effects. In
an effort to bring to life the use of DSP in the guitar
effects world, our goal is to provide the user with a
platform for implementing any effect they can imagine.
Our system can capture, process, store and manipulate
the signal from a guitar and then output the modified
signal.
Index Terms — Filters, Codecs, Digital Audio Player.

I. Introduction
As engineering students, as well as musicians,
we find that a senior design project based around
audio engineering, music technology, and sound
design would be very rewarding and
informative. It would be the perfect opportunity
to apply the engineering fundamentals we have
learned into something we are passionate about.
Closing the gap between technology and music,
we aim to provide new alternatives for
musicians who want to stand out and shape their
sound in a unique way. We are attempting to
provide a digital multi-effects solution that will
have a creative impact on musicians with an
interest in electrical and computer engineering.

Therefore, we designed a musical instrument
effects processing unit. This simple-to-use
effects pedal is able to take the analog input
from a guitar or other musical instrument (via a
¼" instrument cable), convert that analog signal
into a digital signal that can be manipulated, and
then be converted back into an analog signal.

II. Project Description
The digital signal processing (DSP) is done by
the microcontroller.

The CODEC in combination with the MCU
allows the transition from the frequency domain
to the discrete domain, in other words,
converting an analog signal to a digital
bitstream, which is processed on a
sample-by-sample basis and then sent back to
the CODEC in order to be converted to an
audible analog signal. Since most guitar pedals
that are commercially available run off of 9V –
12V (DC), the power requirements would be
very simple to integrate.

III. Hardware Components/Specifications

Figure 1: Block Diagram

In this section we will outline the hardware
components of our design. This will include the
input and output buffers of the circuit, as well as
the tone and volume controls, digital hardware,
user peripherals, and the power distribution
layout of the system.

A. Input/Output Buffers

Figure 2: Input Buffer Simulation



A buffer is an active electronic circuit that can
provide a change in electrical impedance, or
resistance. When it comes to audio circuits,
impedance is directly related to sound quality.
The longer the signal path (distance between the
instrument and the amplifier), the higher the
impedance. The higher the impedance of the
circuit, the darker the tonal quality of the signal
will become. High frequencies will get removed
from the signal, resulting in muddiness and a
lack of clarity.

The reason for this necessary change in
impedance in our circuit is due to the effect that
impedance has on a guitar’s signal. If a musician
is running his/her guitar through a long signal
path of effects pedals, or even just a long
instrument cable (both of which increase in
capacitance the longer they are), the tone of the
instrument will degrade significantly, and the
resilience and clarity of the frequency spectrum
will become compromised.

We implemented a common collector/emitter
follower buffer configuration for both the analog
input and output stages of our circuit. We
designed both buffers to have unity gain of one,
with our input buffer having a high input
impedance and our output buffer having a low
output impedance. In order to mitigate sound
quality issues, we must ensure that the input and
output impedances of our buffers are properly
calculated such that there is no signal loss or
tonal compromise. The input impedance of our
guitar pedal at the input buffer should be
anywhere between 470kΩ to 1MΩ. Any less
than this range would yield a muddy or muffled
sound, and any more would have the opposing
effect of a bright and thin sound that is harsh to
the ears. This impedance range that comes
directly from the guitar’s pickups is very high,
and will need to be brought down to a lower
impedance level to prepare to enter into the
CODEC.

The maximum value of the 2N2222A
transistor’s DC current gain (β) is 300. We can
use this value to assist in calculating the input
and output impedances of our buffer. Since we
know that we want our input impedance to be
high (between 470kΩ to 1MΩ), we can use this

range as a reference when plugging in resistor
values during our small signal AC analysis. The
value of rπ is negligible in our analysis, since it
is in parallel with resistor R2 in our circuit, and
has an incredibly small value relative to the
value of R2. The base of the transistor must be
biased to 4.5V in order for it to turn on and enter
into the forward active region. The coupling
capacitors in our buffer are placed such that the
AC signal coming from the guitar and the DC
signal coming from the 4.5V bias voltage do not
mix.

Figure 3: Output Buffer Simulation

The design of the output buffer is very similar to
the development of our input buffer. We created
a hybrid-pi model to represent the small signal
circuit of the output buffer. Since we are finding
the equivalent impedance from the small signal
circuit we can eliminate the current source from
the model. This leaves the current source as an
open circuit. Also take note that rπ is much
smaller than load at the output. Hence we can
eliminate rπ from the calculations. The nominal
input impedance of an input buffer is between
450kΩ and 750kΩ. The nominal output
impedance of an output buffer is between 400Ω
and 500Ω.

For our input buffer, we calculated 750kΩ input
impedance and measured a value of 682kΩ with
an impedance analyzer. For our output buffer,
we calculated 475Ω output impedance and
measured a value of 419Ω with an impedance



analyzer. Although the calculated values of the
input and output impedance of our buffers
deviated from measured values, they still are
within the nominal range.

B. Power Section

Figure 4: Power Distribution Layout

We chose to power our guitar pedal with 9V
since it is a standard voltage to power guitar
pedals on the market. We implemented linear
voltage regulation to power our devices. The
advantages of linear regulators are that they have
a simple design, low noise due to the absence of
switching, few external parts, and low cost. We
used a 3.3V step down linear regulator to power
the STM32 MCU, PCM3060 CODEC, rotary
encoder, pots, and flash memory. We also
implemented a 5V step down linear regulator to
power the LCD and the PCM3060 CODEC (for
I2C configuration).

We implemented a single ground plane for both
digital and analog ground since our signal
frequencies are low enough to not be disturbed
from cross talk or digital ground noise since
digital ground noise tends to become an issue at
5Ghz. We chose our 9V master power source to
be an isolated 500mA DC power supply with a
standard wall plug in and a center positive 2.1 x
5.5 mm output barrel plug. We chose this
method to simplify our design without having to
rectify and isolate the AC 115 VAC – 120 VAC,
60 Hz voltage from a standard wall plug-in. This

also saves space on the PCB.

We selected an AMS1117-3.3V DC 4.75V-12V
to 3.3V linear voltage regulator and a LM7805
step down 5V linear voltage regulator. The 3.3V
regulator has an output current of 1A and an
operational input voltage of 4.75V to 15V. The
5V regulator has an output current of 1.5A and
an operational input voltage of 7V and 25V.
Given that the total current draw will be under
1A and the input voltage of 9V is well within the
margins of operational input voltage of each
regulator, the regulators will be able to produce
their specified output voltages and produce
plenty of current without the regulators dropping
out. Overall, we chose these regulators for their
simplicity of design, low cost, and low noise.

C. Tone and Volume Control

Figure 5: Tone Control Frequency Response

On most guitar pedal designs, there are some
utility controls available onboard to adjust some
analog parameters of the circuit: volume and
tone. Both of these parameters can be controlled
with a simple variable resistor (potentiometer).
The tone control is used in order to make the
sound of the signal brighter or darker, and the
volume control is used to adjust the overall
amplitude level of the signal leaving the circuit.

The section of our circuit that will come directly
after the digital effects processing stage of our
effects pedal is the tone section. This section
will be responsible for shaping the overall tone
of the effect. A tone control on any piece of
audio gear is generally defined as a simplified
method of equalization that can directly affect



the amplitude of low, middle, and high
frequencies in the human hearing range.

For our tone control design, we implemented the
“Bluesbreaker” style of tone control, which is a
simple First Order Low Pass RC Filter. We
designed this filter with a cutoff frequency of
500Hz. As the user turns the knob to the left, the
tone gets darker (cutoff frequency decreasing)
and when the user turns the knob to the right, the
tone gets brighter (cutoff frequency increasing).

For our volume control, we simply implemented
a potentiometer at the very end of our circuit,
which functions by bleeding our signal to
ground, reducing the amplitude of the output
signal.

D. Peripherals
In order to provide a way for the user to interact
with the guitar effects pedal, we implemented a
few peripherals to control all functionalities and
that create an intuitive experience for the user.
We included a 16x2 LCD screen to display the
parameter values and current effect, and a rotary
encoder to allow navigation between different
operation modes and effects. The user can also
interact with several potentiometers that act as
dynamic controls that can change certain
parameters within each selected effect. We have
also implemented a mechanical 3PDT (3-Pole,
Double Throw) latching footswitch to activate
the effect circuit, as well as a momentary SPST
(Single Pole, Single Throw) footswitch that is
used to interface with the looper mode and
provide tap-tempo functionality to the timed
effect parameters. In order to provide even more
user feedback, there are two LEDs onboard the
ADEPT that display the status of several
parameters (on/off and tap tempo/looper state).
For timer testing purposes, a “heartbeat LED” is
also present on our PCB.

E. MCU (STM32F446RC)
The microcontroller chosen was the
STM32F446RC. This device is responsible for
performing the Digital Signal Processing to
produce the desired effects, as well as driving
the several other peripherals in this design. The
package chosen was that of a 64 pin layout,
although is not the largest one, the amount of

peripherals we have is few and we didn’t use all
the pins. The STM32 is running at a maximum
clock speed of 180MHz, and contains a flash
memory capacity of 256kB and SRAM of
128kB. We took advantage of some of the
included features such as the general purpose
DMA1 and DMA2, which proved to be essential
for memory management and data flow of the
audio buffers. We also decided to equip the
MCU with an external clock of 8 MHz for
stability. We were able to program the chip
through an external SWD/JTAG debugger
linking device in accordance with the
STM32CubeIDE to assign pins and flash the
code to memory.

F. CODEC (PCM3060)
The PCM3060 by Texas Instruments is a device
that contains both an ADC and a DAC converter
in one chip. It is necessary for digitizing the
guitar signal for it to be processed by the MCU,
as well as reverting the modified signal back to
analog to be reproduced as sound. This IC can
achieve a resolution of up to 24-Bits at a
sampling rate of 48KHz. I2C is used for mode
control purposes and I2S for transferring audio
data. To function properly this chip needs to be
clocked via an external oscillator crystal running
at 12.288MHz. The analog output lines of the
PCM3060 are directed to the analog output
buffer before going to an amplifier.

G. Flash Memory (W25Q128JVSIQ TR)
In order to have long enough sample storage for
an additional looping function, we will require
an external flash memory. The internal 256 KB
flash memory embedded on the MCU won’t be
enough to store long samples. For example, if
we are recording audio at a sampling frequency
of 48 kHz with a 24 bit resolution, then we can
calculate the required amount of memory, which
will be equal to 44,800 samples/second * 24
bits/sample = 1,075,200 bits (134.4 kB). The
memory cost for recording a second is already
too much for the internal flash memory of the
MCU, and the usual guitar loop is between 1 - 5
seconds. However, no signal processing was
envisioned for the recording of a loop. We
would only record and playback a clean guitar
signal.



IV. Software System Concept

Figure 6: System Flowchart

The system flowchart shown above is a
depiction of how the firmware reacts based on
the decisions done by the user. As you can see,
the system is non-conclusive in nature, meaning
that since the system is started, then it won’t stop
until the whole system is shut down.

Figure 7: System State Machine Diagram

The two-state machine diagram we see above
shows the non-conclusive nature of the system.
The system is mainly driven in the state of
“listening mode” which refers to the state in
which we are storing incoming data from the
ADC component of the CODEC, processing it,
and then transmitting it to the DAC component
of the CODEC. The system will remain in a
constant listening mode unless we decide to
press the reset button or power it off. Menu
browsing using the rotary encoder will not
interrupt the audio processing. When one of the
effects is selected, then the system immediately
applies the corresponding DSP function to the

values stored in the audio buffer. The “audio
buffer” is a combination of two array buffers of
type uint16_t.

V. Software Details

A. I/O Buffers & DMA
Both of these buffers are used by the DMA1 to
store and transmit the data using a circular
algorithm. Which allows us to have a constant
flow of data into our buffers and automatically
reloaded.

The DMA circular buffer is configured by HAL
automatically, so there’s no required code
implementation, however for audio applications
it is recommended to also use a Ping-Pong
buffer algorithm with the DMA’s circular buffer,
this speeds up the process of applying the DSP
function to the values received. The
implementation of the Ping-Pong algorithm was
done on a sample-by-sample basis, where the
data is introduced in pairs (L/R), a complete
sample constitutes two left samples and two
right samples, alternated. Therefore, a full single
sample required 4 cells in a uint8_t array. The
algorithm requires us to have a size of 2N,
where N is 4.

Figure 8: Ping-Pong Buffer

The reason we want to have the two halves is so
that the DMA can safely access one of the
halves while we apply the DSP function to the
other. In the time that the DMA takes to fill up
one half of the receive buffer with incoming
samples from the I2S, we are processing the
other half of the receive buffer. The DMA is



simultaneously transmitting out the most
recently processed block of sample. In our case,
the block would be of size 1 since we are doing
sample-by-sample basis. With the use of the
DMA’s half-full and full buffer interrupts we let
the DMA handle transferring to and from the
CODEC whilst the processor handles the signal
processing. This is a highly efficient audio
stream algorithm that helps the processor
devotes most of its resources to only audio
processing while the memory management is
handled by the DMA.

B. STM32 HAL
The Hardware Abstraction Layer is a
compilation of drivers created by STM with the
intention of increasing development speed and
productivity across all of their STM32 line of
chips. The HAL drivers offer a series of APIs
which simplify the setup and usage of most
generic peripherals included in the STM32. It
proved especially valuable when dealing with
using I2S along with DMA since it was a
concept very new to us and allowed us to get to
development quicker. However, a big downside
of using HAL is its difficulty to debug once
something went wrong. Having to dive deep
into nested libraries with high-level functions
and routines to find out what could be simple
bugs, became an issue.

VI. Effects & Algorithms

A. Delay

Figure 10: Feedback Comb Filter

The implementation we utilized for our delay
simulates that of a feedback comb filter. This
particular comb filter is an IIR (“recursive”)
digital filter since there’s feedback from the
delayed output to the input. The result is a
sequence of “echoes” exponentially decaying.

Figure 11: Difference equation

For stability we want |aM| <= 1, otherwise the
result would be an infinitely increasing series of
echoes, where each one will be louder than the
previous one.

B. Distortion
In order to reproduce the effect of distortion, the
original signal must be hard clipped at the top
and bottom of the wave, as shown in the figure
above. To achieve this digitally we implemented
a program where we are able to amplify the
incoming signal, as well as specify the
thresholds of +Vcc and -Vcc such that the
amplified signal will be distorted/clipped at the
top and bottom of the signal’s waveform.

Figure 12: Distortion/Clipping Diagram

The values by which the signal was modified are
determined by the parameters set by the user
through the parameter potentiometers. These
parameters are Amplitude, Threshold, and
Mix/Blend.

C. Allpass/“Pipe”

Figure 11: Allpass Filter Diagram

The allpass filter shown above is analogous to
the all-pass filter from analog filters. As the
name implies it allows pass of all frequencies, in
other words the amplitude response of an all
pass filter equals to 1 for all the frequencies,
whilst the phase response (determines delay vs.
frequency) can be arbitrary. For our
implementation we have changed the gain
parameter to 0.7, this results in a sound similar



to if you played a signal through a pipe, hence
the name “pipe”.

D. Reverb
A reverb filter tries to emulate the physical
model of sound in a room, where there’s
multiple different reflections of the sound
coming from the source.

The implementation used for the reverb filter
follows Schroeder reverberation algorithm.
Which is a popular reverb algorithm published
by Schroeder for the Audio Engineering Society.

The way it is implemented is using 4 comb
filters in parallel with 3 all pass filters. There’s
also a feedforward that allows us to use the
parameter of dry/wet, allowing the user to
determine how much of the clean signal will be
added to the output.

E. Compressor
The goal of a compressor is to gradually reduce
the overall gain of an input signal if it is passed a
certain threshold. The compressor has three
main parameters: Attack, release, and hold. If
the input signal jumps to a higher level above
the threshold, then the attack phase is initiated;
attack means that the audio input signal level is
reduced step-by-step over time until the final
gain reduction is complete. The attack parameter
is set to a specific time in milliseconds. Once the
signal level is below the threshold then the
compressor recognizes this and waits for the
hold time to set the signal back to the 0 dB gain
(gain of 1). Over the time of the defined release
time the audio signal is not manipulated
anymore.

F. Pitch-Shifter
From a musical point of view, pitch shifting
corresponds to the shift of a melody one or more

semitones up or down. Now, from a signals
point of view, pitch shifting consists of scaling
the fundamental frequency and its harmonics by
a specific factor.

The way this is implemented in the code is by
utilizing a circular buffer that introduces every
new sample and sums a value (the Shift desired)
to it, thus returning a scaled version of the
sample.

G. Looper
To implement this feature, we used the external
flash memory to store guitar input audio and our
SPST foot-switch to prompt the program to
cycle through three different states as shown in
the diagram below.

Figure 12: Looper Functionality States

During the recording state audio data gets stored
in the flash memory, the next state retrieves the
audio from memory to play it in a loop, and a
final switch press places the pedal on stand-by
state ready for the next recording. Although we
were able to store and reproduce audio, it was a
challenge to play it back at its original tempo
due to the difficulty of synchronizing the read
speed of the flash with the I2S transmit speeds.
We decided to keep this feature in our design
since the sped-up playback results in a very
interesting effect.

VI. Board Design

We designed our PCB via the use of the
AutoCAD Eagle schematic and PCB layout
software. Our final PCB has dimensions of
116.51mm x 88.88mm. For simplicity and
cost-effectiveness, we decided on a 2-layer
design. This makes for a thin, yet robust PCB
thickness. We utilized the default trace width
and spacing specifications present within Eagle.
When routing, we used the tRestrict, bRestrict,
and vRestrict layers to prevent traces from being
laid underneath our crystal oscillators (causing



interference), as well as prevent vias from being
laid too close to any power pins.

For our PCB manufacturing, we decided to go
with OSH Park. This company offers affordable
PCBs and a simple-to-use website interface that
does not require Gerber files from the PCB
design software. We simply uploaded our
completed .brd file from Eagle and were able to
quickly and efficiently order our PCBs without
complication.
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VIII. Conclusion

Every analog component was researched and
tested in a simulation environment before they
were used. We ordered a prototype PCB to be
tested during development. After simulations
were completed, we breadboarded all analog
circuits with a STM32 NUCLEO Development
Board for the MCU and a PCB breakout board
for the CODEC. We compared changes made to
the breadboard prototype to the PCB prototype.
Once complete, a final PCB was designed and
ordered to reflect the changes we made in the
development of the prototype.

Senior Design has been an extremely valuable
experience where we had the chance to apply
concepts learned during our undergraduate
courses. We now understand that there will
always be flaws in the original design and
unexpected roadblocks that manifest during
implementation. As a result, we learned to
overcome hurdles as a team and cooperate with
one another to solve complex problems.
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